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Overview

• NASA / JPL’s interest in Quantum Technologies
– Quantum Computers

• Faster solution of certain hard computational problems
• Unmatchable by any conventional computer

– Quantum Communications
• Superdense information compression
• Securing command & control of orbital assets

– Quantum Sensors
• Gyroscopes / Accelerometers / Magnetometers
• Gravity Gradiometers (underground sensing)
• Gravity Wave Detectors

– Quantum Lithography

• In this Talk …
– What are Quantum Computers?
– Why are they Interesting?
– State-of-the-Art Quantum Computing Hardware at JPL

• Automated Quantum Computer Circuit Design
• Superconducting and Linear Optics Quantum Computing Hardware

– Spin-off technologies from Quantum Computing
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Overview

• What is a quantum computer?
–From bits to qubits
–Quantum memory registers
–Quantum computation

• What can you do with a quantum computer?
–Quantum algorithms

• How do you make a quantum computer?
–Quantum algorithms to quantum circuit designs
–Quantum circuits designs to quantum hardware

• JPL interest in quantum computing
–NASA-relevant quantum algorithms
–Spin-off quantum technologies
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Miniaturization Trend

Miniaturization of computer technology as a function of time

• Trend in miniaturization leading to quantum scales

• Gives computers access to new repertoire of physical effects 
– Superposition, Interference, Entanglement, Non-locality, Non-determinism,    

Non-clonability
– Allows fundamentally new kinds of algorithms

• Nanotechnology may/may not exploit all quantum phenomena
– To maximize impact will need to harness uniquely quantum effects, e.g., 

entanglement
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Nanotechnology c.f. Quantum Technology

• Nanocomputers compared with quantum computers

Nanocomputers Quantum Computers
Nanoscale 
Quantum 

Computers

Equivalent to conventional 
computers, but faster and 
more compact

More efficient than conventional computers 
on some problems but need not be “small” at 
all e.g., NMR quantum computers

Most interesting class: 
faster, smaller, more energy 
efficient, and algorithmically 
superior to conventional 
computers

• Use nanofabrication techniques to assemble quantum 
computing hardware
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At Quantum Level Commonsense Fails

• Theory of computation harbors implicit assumptions
− which cease to be true at quantum scales

“Because nature isn’t classical dammit!”
Richard Feynman

• What are these assumptions?
− Bit always has a value

• For qubits, each assumption can fail 

− This value is 0 or 1
− Bit can be copied without error
− Reading a bit does not change it
− Reading a bit has no affect on other (unread) bits



© Colin P. Williams 2004

Fundamental Shift in Foundations
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• … becomes Quantum Turing Machine
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Probabilistic Turing MachineTuring Machine

• All computational paths pursued simultaneously
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From Bits to Qubits

• Use 2-state quantum systems for bits (0s and 1s) e.g. spins, polarized 
photons, atomic energy levels

• A qubit can exist in a superposition state                            s.t. 12
1

2
0 =+ cc10 10 cc +=ψ

10 cc +=ψ 
QUANTUM

Zero and OneZero or One

0

1

CLASSICAL

111110000000 1210 KLKK −+++= ncccψ• Memory register, n qubits 

10

• Potential for massive parallelism …but can’t read out all answers
• Can only read a collective property of the answers
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Entangled Qubits

• Quintessential quantum property of qubits
– State of one qubit linked with that of another

• Entangled state, e.g.,  

( ) BABABA φψ≠+ 1100
2

1

• Initially, neither “A” nor “B” has a definite bit value
• But measuring bit value of “A” determines that of “B” and vice versa
• Effect appears to propagate instantaneously independent of 

– Distance between “A” and “B”
– Nature of intervening medium
– Recent experiments bound speed to > 10,000 c (Gisin, Geneva)
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Reading Qubit Changes Qubit

• Physically, “readout” depends on how qubit is implemented
− Spin-1/2 particle: measure spin orientation
− Polarized photon: measure plane of polarization
− Atomic energy levels: measure energy level

• Non-deterministic outcome
 

2
0)0Pr( c=

10 10 cc +=ψ

2
1)1Pr( c=

• Read qubit = project in             basis{ }1,0
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Quantum Algorithms

• Register evolves in accordance with Schrödinger eqn.

tmeasuremenafteroutput111oror100or000
tmeasuremenbeforeoutput)(

algorithm
datainput)0(

↔

↔

↔

↔

KLKK

t
U

ψ

ψ

)0()0()exp()( ψψ UtHit =−= h

ψ
ψ

H
t

i =
∂

∂
h

• with solution ψ

• Make connection to computation:

Algorithm: Specification of a sequence of unitary 
transformations to apply to an input quantum state, 
followed by a measurement
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Quantum Circuits

• Quantum circuit is a decomposition of desired unitary matrix 
into sequence of single and pairwise quantum logic gates

• Only requires
– y-rotations, z-rotations, phase-shifts, and controlled-NOT gates (CNOT)
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What Makes Quantum Computers So Interesting?

• QCs take fewer steps than classical computers
− Not technological (faster chip) advantage
− But complexity (fewer steps) advantage
− Unmatchable by any classical computer
− Potential breakthrough in solving hard computational problems

• QCs are reversible computers
− Potentially energy efficient
− Energy expended in computation is recoverable

• QCs perform tasks that no classical computer can do
− Quantum teleportation
− Utterly secure communication
− Simulations of physical systems too complex to describe exactly / explicitly
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Quantum Algorithms
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Quantum Algorithms

• Exponential Speedup
–Deciding whether a function is constant or balanced  (Deutsch)
–Sampling from Fourier Transform  (Simon)
–Factoring Integers  (Shor)
–Simulating Quantum Systems  (Abrams/Lloyd)
–Computing Eigenvalues  (Abrams)
–Sampling from Wavelet Transform  (Fijany / Williams)
–Hitting Times for Quantum Random Walks (Ambainis/Childs/Farhi/Gutmann)
–Solving Pell’s Equation (Hallgren)

• Polynomial Speedup
–Searching unstructured virtual databases  (Grover)
–Solving NP-Complete/NP-Hard problems  (Cerf / Grover / Williams)
–Finding function collisions  (Brassard)
–Estimating Means, Medians, Maxima and Minima (Grover, Nayak/Wu)
–Counting Number of Solutions (Brassard/Hoyer/Tapp)
–Evaluating High-dimensional Numerical Integrals  (Abrams / Williams)
–Template Matching (Jozsa)
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Quantum Algorithm for
Factoring Integers
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Factoring Integers

• Multiplication easy 

• Factoring hard

Nqp =×

qpN ,→

N = 1143816257578888676692357799761466120102182967212423625625618429…

…35706935245733897830597123563958705058989075147599290026879543541

N

qp
p = 32769132993266709549961988190834461413177642967992942539798288533

q = 3490529510847650949147849619903898133417764638493387843990820577
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Complexity of Factoring Integers

• Number Field Sieve                         sub-exponential  (hard!))(
3231 )(lognneO
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• Why does anyone care?

• Security of widely used public key cryptosystems rests on the 
presumption that factoring is hard, e.g., RSA 
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RSA Public Key Cryptosystem

7. Decrypt using private key and rule Mi = Ei
d mod N

8. Reconvert the {Mi} back to the plaintext P
Decrypt

5. Represent message P as a sequence of integers {Mi}
6. Encrypt Mi using public key and rule Ei = Mi

e mod N
Encrypt

1. Find two primes, and compute their product N = p q
2. Find integer d coprime to (p-1)(q-1)
3. Compute e from e d = 1 mod (p-1)(q-1)
4. Broadcast public key (e,N) , keep private key (d,N) secret

Create Keys

As public key (e, N) known, can crack RSA if you can factor N into N = p q 

… because can then find private key, (d, N), from e d = 1 mod (p-1)(q-1)  

So fast-factoring would make most current e-commerce transactions 
vulnerable to eavesdropping / fraud
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Example of RSA

In[29]:= $PublicKey, $PrivateKey = CreatePublicKeyAndPrivateKey 20 ;

Picking p: p = 3097172369
Picking q: q = 3782480549
Hence n = p q = 11714994242642750581
Picking large integer d, co- prime to n: d = 7520374751991265811
Computing modular inverse, e, from e d = 1 modHp- 1LHq- 1L: e = 9871244581433966043
Public Key is8e, n<= 89871244581433966043, 11714994242642750581<
Private Key is8d, n<= 87520374751991265811, 11714994242642750581<

In[30]:= cipherText= EncryptRSA@"I'm hungry. Let's eat! ", $PublicKeyD
Out[30]=86337662632885750605, 4223282963866241971, 8515734954729530610,

572105026579800127, 3125477641371647366, 8785778425474049423, 116095988027245517,
184319673489821967, 4095890900271762030, 5711708545539327862, 5188837378111696662<

In[31]:= DecryptRSA@cipherText,$PrivateKeyD
Out[31]= I'm hungry. Let's eat!

8 < @D
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Factoring via Period Finding

Can factor integers by finding period of a function related to the factors

Classical (inefficient) algorithm 

Example: factor  N = 15
─ Choose random integer x that is coprime to N 

─ e.g.  x = 2 will suffice because gcd(2, 15) = 1 
─ Compute the sequence of integers xi mod N, giving:

─ 20 mod 15, 21 mod 15, … = 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8 …
─ Sequence is periodic, with period  r = 4
─ Factors of N given by gcd(xr / 2 ± 1, N)
─ Gives 15 = p q where p = gcd(5,15) = 5, q = gcd(3,15) = 3  

But there is a fast quantum algorithm for period finding
─ Based on sampling from Fourier transform of this periodic sequence
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Quantum Factoring I: Periodic State
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Quantum Factoring II: Find Period

Repeat Shors Algm OHlnHqLL times.

Obtain samples from DFT in Reg1
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Quantum Algorithm for
Solving NP-Complete 

Problems
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NASA-Relevant Computations

• Autonomy relies on solving NP-Complete/NP-Hard problems
–Diagnosis
–Planning
–Scheduling
–Combinatorial Optimization
–Learning
–Constraint Satisfaction
–etc …

• Image Interpretation
–Change detection
–Superresolution
–Pattern recognition

• Can’t tame NP-Hard problems with conventional computers
• But quantum computers can speed up computations by:

–Exponential factor, 
–Polynomial factor, or
–Not at all
–So possibility exists for fundamental algorithmic advance
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INTRACTABLE
(Factoring)

TRACTABLE

Solving one type of NP-Hard problem efficiently would solve ALL types 
of NP-Hard problems efficiently as you can easily interconvert them
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Example: Quantum Search Algorithm

• Invented by Lov Grover, Bell Labs, in 1996
–L. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, in Proceedings of the 28th 
Annual ACM Symposium on the Theory of Computing (1996) pp212-219.
–G. Brassard, “Searching a Quantum Phone Book”, Science, January 31st (1997) pp.627-628.

• Problem: Find the name of the person in a telephone 
directory who has a prescribed telephone number

–Suppose N entries in directory
–Classical: need O(N) queries in worst case
–Quantum: need O(N1/2) queries in worst case

• Gives polynomial speedup

• Use as subroutine in higher-level quantum algorithms
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How Quantum Search Works
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• Knowledge of database encoded in an “oracle” function
– x is the index of an item in the database
– Target entry has index x = t
– Oracle returns ft(t) = 1, ft(x) = 0 otherwise

• Use “oracle” to build an “amplitude amplification operator”, Q

– where      is a superposition of equally weighted indices
– is the (unknown) target index that you are seeking
– is a unitary operator
– is the unitary operator representing the oracle
– is any unitary matrix having only non-zero elements
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Amplitude Amplification Boosts “Signal”

Step 1: Create equally weighted superposition of all N candidates
Step 2: Synthesize amplitude amplification op.
Step 3: Apply Q times 
Step 4: Read register – will obtain target index with probability O(1)
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• Takes square root as many steps as is required classically
• Fundamental algorithmic advance that is only possible on a 

quantum computer
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What about the NP-Hard Problems?

n nodes, b colors

Step 1: Superposition of consistent partial 
solutions at intermediate level 

Step 2: Perform amplitude amplification in 
the subspace of their descendants

Step 3: Nest Step 1 inside Step 2

Nested Quantum Search

n1 = red

n1 = red, n2 = blue 

• Best classical tree search O(b0.446n)

• Naïve Quantum Search O(b0.5n)

• Structured Quantum Search O(b0.333n)
• N. Cerf, L. Grover, C. P. Williams, “Nested Quantum Search and 

Structured Problems,” Phys. Rev. A, 61, 032303, 9th February 
(2000)

• C. P. Williams, “Quantum Search Algorithms in Science and 
Engineering”, Colin P. Williams, Computing in Science and 
Engineering, IEEE Computer Society, April (2001).

ComparisonInduces tree-structured search space
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An Alternative Approach :
the Quantum Adiabatic Algorithm

• 3-SAT: Given n Boolean variables, x1, x2, …, xn, 
find an assignment of True or False to each one 
that makes a sentence, like the following, True:

4444444444 34444444444 21
K

clausepervariables3clauses,,variables
651432431 )()()(

mn

xxxxxxxxx ∨∨∧∧∨∨¬∧∨¬∨

0 5 10 15 20 25 30 35
Problem size, n

500

1000

1500

2000

2500

tsoC

en

e
�!!!n3 log

2€€€€€€3HnL
n2

INTRACTABLE
(NP-Complete / NP-Hard)

INTRACTABLE
(Factoring)
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QUANTUM ADIABATIC ALGORITHM
• Encode 3-SAT problem instance to be solved in a 

Hamiltonian, H1, s.t. its solution is the ground state of 
H1

• Start system off in the ground state of some other 
(easy to arrange) Hamiltonian H0

• Slowly change the system, in T increments, so that 
at time t, its instantaneous Hamiltonian, H(t/T) is a 
weighted combination of H0 and H1, i.e.

• At time t = T, measure the system 
• If you go slowly enough, i.e., “adiabatically”, 

Adiabatic Theorem says you should end up in the 
ground state of H1 (and hence solve problem)

10)1()( HHH T
t

T
t

T
t +−=

ADIABATIC THEOREM
• If smallest gap between ground state and first excited 

state is 

• Matrix element between corresponding eigenstates is

• Then overlap between final (actual) state and desired 
(ground) state will be

• Provided  

ε≤2
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How Does Cost of Adiabatic 
Algorithm Scale with Problem Size?

• What is known (analytically)?
– Early numerical studies hinted at a polynomial scaling

– Farhi proves scaling is polynomial for “easy” problems

– Ruskai proves minimum gap is non-zero

– van Dam, Mosca, Vazirani exhibit problem for which scaling is provably 
exponential

– Farhi et al. circumvent such instances by choosing a different interpolation path

– Roland and Cerf nest one adiabatic algorithm within another to achieve an 
adiabatic solution of an NP-Complete problem that is faster than adiabatic version 
of Grover’s algorithm on that problem

• True scaling (for hard problems) is unknown analytically
– Can it be estimated reliably by extrapolating simulations?
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Beware of Extrapolations 
from Small Scale Simulations

n = 8 
variables
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m �n
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GSAT 
algorithm
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soluble cases

Solved 
with DP 

algorithm

n = 20

n = 40

n = 50

Ensemble of 
soluble and 

insoluble 
cases

• Numeric scaling prediction 
based on extrapolation from 
n = 10, 15, 20 variable 
instances of 3-SAT

• From classical computer 
science we know such 
scaling is not very reliable 

• Questionable to assess scaling 
from small-scale (n < 50) 
numerical simulations

• Quantum adiabatic algorithm 
for n = 50 is well beyond what 
we can simulate classically

• Need an analytic model of scaling of the quantum adiabatic algorithm
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Mapping
Quantum Algorithms into 

Quantum Circuits
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Quantum Algorithms

• Register evolves in accordance with Schrödinger eqn.

tmeasuremenafteroutput111oror100or000
tmeasuremenbeforeoutput)(

algorithm
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t
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ψ

H
t

i =
∂

∂
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• with solution ψ

• Make connection to computation:

Algorithm: Specification of a sequence of unitary 
transformations to apply to an input quantum state, 
followed by a measurement
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QCD: Quantum Circuit Design Tool
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QCD constructs its circuit 
decomposition from the 
Generalized Singular Value 
Decomposition (GSVD) of the 
given unitary matrix

• QCD: Mathematica-based circuit design tool
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Generalized Singular Value Decomposition 

• GSVD exploits fact that blocks of a partitioned unitary matrix 
have highly related singular value decompositions (see Golub & 
van Loan, “Matrix Computations”, p.77)

• GSVD decomposition of a 2n×2n unitary matrix
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• L0, L1, R0, R1, are 2n-1×2n-1 unitary matrices
• ),,,( 12211100 −== nCCCdiagDD K

• ),,,( 12210110 −=−= nSSSdiagDD K
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Apply Recursively …

• Recurse until factors are direct sums of 1-qubit gates
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Needs special handling
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Block-Diagonals “Easy”

• Once you have a block-diagonal form can easily map this into 
an equivalent “conditional” quantum logic circuit
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Tri-banded to Block-diagonal

• Central matrix                                      is always tri-banded≡ 0100
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• Can map tri-banded matrix to block-diagonal matrix using qubit
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Circuit Compactification

• Output from GSVD can be compactified using randomized scheme
– Select a sub-circuit, computes implied unitary matrix, redesigns a circuit for it, and accepts the 

result if of lower depth
– Compactifies across boundaries of adjacent conditional gates, e.g.,

Target matrix =
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Quantum Fourier Transform

• QCD can detect special structure if it exists
– E.g. QCD finds a compact circuit for QFT
– Comparable to direct conversion of usual QFT circuit which 

involves conditional gates
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0.12
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0.25
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 0.18
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Quantum Wavelet (D4) Transform

 0.52

0.84
Re

 0.59

0.84
Re

 0.56

0.84
Re

 0.52

0.84
Re

• QWT (in pyramid algorithm) also has special structure
– QCD also finds compact circuits for QWT
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Signal, Data and Image Processing

• Earth Sciences and Space Sciences Enterprises
• Signal, image and data processing fundamentally different on 

a quantum computer than classical computer
–Classical-to-quantum data encoding

•Linear cost
–Quantum processing 

•Some operations yield exponential speedups
•e.g., quantum versions of Fourier, wavelet, and cosine transforms

–Quantum-to-classical readout 
•Cannot “see” result in conventional sense
•Can sample from, or obtain collective properties of, processed signal, image or data

• Can process an image exponentially more efficiently, report 
on a property of interest, but be unable to display the result

–Quantum world strongly distinguishes truth from proof

• Let’s look at how to enter data into a quantum computer
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Data-Entry on a Quantum Computer
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Step 1:  Normalize the data vector, and pad it to length        , i.e., compute 

Step 2:  Interpret     as the amplitudes of the pure state 

Step 3:  w.l.o.g. assume amplitude            (otherwise permute basis until           )

Step 4:  Construct the matrix M defined by: 

Step 5: Use Gram-Schmidt process to fix first column as         and compute orthonormal
columns for the rest of the matrix

Step 6: Map this unitary matrix into an equivalent quantum circuit using QCD circuit design tool

Output: A circuit for synthesizing an arbitrary data input to a quantum computer 

Algorithm DataEntry:
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• Encode 2n data values as the amplitudes 
of just n qubits
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Quantum Computer 
Hardware
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What is Needed to make a Quantum Computer?

• Necessary criteria for a system to serve as a quantum computer
Requirement Explanation

Qubits There are quantum states that can serve as qubits
Initialization All qubits can be placed in a standard starting state
Static Memory Qubits must not change during storage
Unitary Operations Can do unitary operations on arbitrary subsets of qubits
Conditional Operations Operation performed on one qubit depends upon of another
Readout The value of any qubit accessible via measurement operation
Isolation Qubits must not interact with environment in between readouts
Error Correction Unknown (and unknowable) errors can be corrected

• Detailed information on all major schemes available at
–http://qist.lanl.gov (ARDA’s Quantum Computing Roadmap)

–http://xxx.lanl.gov/archive/quant-ph (Preprint server for all things quantum)
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Architectures Converging on Nanoelectronics

Ion Traps

Linear Optics

Nuclear Magnetic Resonance
(available today but hard to scale)

Nuclear Spins

Electron Spins

Cavity QED

Charge (Cooper Pairs)

Ion Traps on Chip
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Superconductor-Based 
Quantum Hardware at JPL
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Charge-based Qubits

• Qubit as a Single Cooper Pair Box1,2

– Cooper pairs tunnel through Josephson junction 
onto island

– Qubit encoded as the number of Cooper pairs on 
the island

– Coherent oscillations in the number of pairs

SCB-based qubit fabricated in Aluminum using e-beam 
lithography.
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1Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).
2P. Echternach, C. P. Williams, et al. “Universal Quantum Gates for Single Cooper Pair Box Based Quantum Computing,” Quantum 
Information and Computation, Vol. 1, (2001) 143-150 (also at http://xxx.lanl.gov/abs/quant-ph/0112025).

Charge-based qubit fabricated at JPL using 
e-beam lithography
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Hamiltonian for 2-Qubit Gate

• Qubit-Qubit interaction Hamiltonian
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The iSWAP Gate

• Can make any 1-Qubit gate
• But no obvious way to make CNOT
• However, can make a new 2-qubit gate called “iSWAP” 
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1000
000
000

i
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• Question: is iSWAP as useful as CNOT ?
− Is set of all 1-qubit gates  ∪ iSWAP a universal gate set?
− Are iSWAP circuits as efficient as CNOT circuits?

0001 iSWAP circuit icon
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iSWAP-based circuits

• iSWAP is an alternative entangling gate to CNOT
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• Proof of Universality: Write CNOT as iSWAPs and 1-qubit gates
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Hybrid Charge-Phase Qubits

Coupling several qubits via a bus

• Charge qubits are susceptible to 
fluctuations in background charges

• Other superconducting qubits possible
– E.g., the 3JJ phase qubit1
– Superposition of a right and left circulating currents
– “Long” coherence time (2.5µs)
– But how to do 1-shot readout?

• D-Wave invented hybrid qubit2

– Dual of Saclay hybrid charge/phase qubit
– Uncertainty in phase leads to localization in charge
– Hence can infer phase state by measuring charge using 

an RF-SET (developed for reading charge-based qubits)

• JPL now collaborating with D-Wave to make 
these phase/charge hybrid qubits

1J.  Mooij et al., Science 285, 1036 (1999))
2M. Amin, see http://xxx.lanl.gov/abs/cond-mat/0311220
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Linear-Optics
Quantum Hardware
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Linear Optics Quantum Computer

• Original optical QCs required elements with strong nonlinearities

• Schemes using only linear elements, and photo-
detectors now known to be possible

– Non-linearity in detectors replaces non-linearities in elements
– E. Knill et al., Nature 409, 46 (2001), arXiv:quant-ph/0006088

• “Dual-rail” logic encoding:
– Logical “|0〉” ≡ |1〉A |0〉B and logical “|0〉” ≡ |0〉A |1〉B
– Modes “A” and “B” may be two spatial modes, or two 

polarization modes in same spatial mode
Photo courtesy Univ. Queensland

• 1-qubit gates
– waveplates and phase delays

• 2-qubit gates
– Non-deterministic CNOT and 

CSIGN gates (shown)

Polarization-encoded CSIGN gate (equivalent up to 1-qubit gates to CNOT)
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LOQC Quantum Search Algorithm

• Simplified quantum circuit for 2-qubit Grover algorithm1

• Equivalent LOQC interferometer set-up

1J. Dodd et al. http://xxx.lanl.gov/abs/quant-ph/0306081
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JPL Interests in LOQC  

• Quantum computing (in collaboration with Oz QC groups)

• Using LOQC tricks in quantum communications & quantum sensors

• Heralded 2-photon entanglement source

• Quantum Non-Demolition Detector
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Building Components that Enable more 
Sophisticated Devices

• QND device allows us to devise a method for correcting for 
photon losses (in transmission down a fiber)

QND xσ

QND xσ

QND xσ

QND xσ

H

H

H

H

zσxσ
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Quantum Gyroscopes



© Colin P. Williams 2004

One-Port Fock Input

• Exactly N photons per second in Port A and just vacuum in 
Port B

BA
N 0=ψ

Port B

Port A

Ω 





=∆ − N
O 1

Port1φ

Phase sensitivity
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Entanglement

• Multi-particle quantum state that cannot be factored into a 
definite state for each particle

– e.g.,
– Either N particles in path A and none in path B …,
– … or none in path A and N in path B
– State not definite until particle-number in a path is measured (counted)

)00(
2

1
BABA

NN +=ψ
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Two-Port Entangled Fock State

• Entangled Fock state fed into ports A and B
• Almost equal numbers of photons per port
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Quantum / Classical Sensitivity

• Minimum detectable rotation rate,
– If N = total number of particles passing through device per unit time
– ~ 1016 photons per sec

∆Ω

N
1

portone ∝∆Ω −• Classically, 

N
1

porttwo ∝∆Ω −• Quantumly, Ω

r

photon

fiber

δl

• Hence 2-port quantum optical gyro 108 times more sensitive to 
rotation than equivalent 1-port optical gyro!
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Quantum Gyroscopy Applications

• Precise rotation sensing needed for
– Altitude/attitude control
– Recovery in turbulent flight
– Drone formation-flying
– Inertial navigation
– Instrument pointing & stabilization
– Unjammable GPS
– Autonomous vehicles
– Covert navigation

• Quantum gyroscope is feasible
– Expected to be ~ 106 to 1010 times more sensitive to 

rotation than existing gyros!
– “Correlated Input-port, Matter-wave Interferometer: 

Quantum Noise Limits to the Atom-laser Gyroscope”, J. P. 
Dowling, Phys. Rev. A, Vol. 57, No. 6, June (1998)
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Quantum Lithography
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Quantum Lithography

“Quantum Interferometric Optical Lithography: Exploiting Entanglement 
to Beat the Diffraction Limit”, A.. Boto, P. Kok, D. Abrams, S.  Braunstein, 
C. P. Williams,  and J. Dowling, Physical Review Letters, Vol 85, 13, 
(2000) pp.2733-2736 

Finer (Sub-wavelength) Lines using Entangled LightConventional view: feature spacing 
limited by wavelength of light used 
(Rayleigh criterion):

Spacing = λ/(2 sin(θ))

But by interfering quantum entangled 
photons |0>|N>+|N>|0> we obtain:

Spacing = λ/(2 N sin(θ))

Beat Rayleigh criterion by factor of N

Linear improvement of N gives 
density improvement of N2

Currently know how to do N = 2, 3, 4 in 
principle, N can be arbitrarily large

Ideal for ultra-fine diffraction gratings (uses 
in extreme spectroscopic astronomy)

More complex 2D patterns achieved by 
using multiple exposures using different 
photon input states

Input states are “Fock states” – highly non-
classical light
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Conclusions

• Quantum computing allows fundamentally new kinds of 
algorithms

• Some problems can be solved exponentially faster on QCs
–Factoring integers, and quantum simulation

• Some can be solved polynomially faster on QCs
–NP-Complete problems

• With just 50 qubits can simulate physical systems beyond 
the reach of current supercomputers

• Contact: 
–Email: Colin.P.Williams@jpl.nasa.gov
–Tel: (818) 393 6998
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