Solid Oxide Fuel Cells

Craig R. Horne, Ph.D. MIT-Stanford-Berkeley Nanotech Forum July 12, 2005

http://www.kainosenergy.com

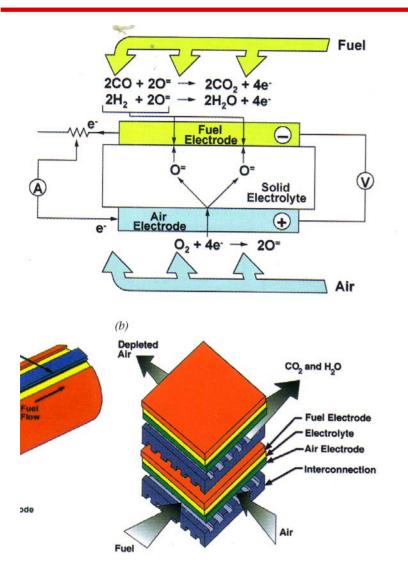
Outline

Solid Oxide Fuel Cells

Applications

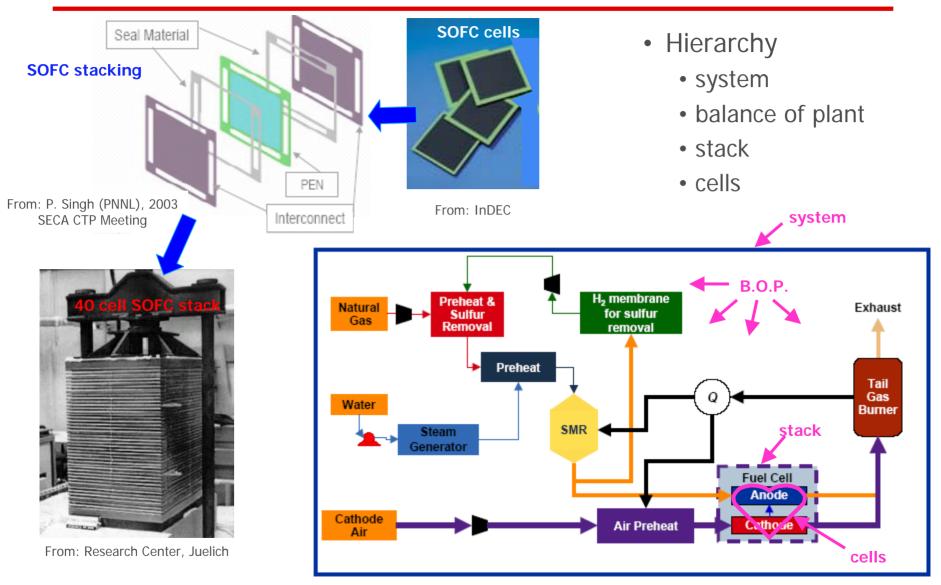
Status

Nano Aspects Kainos Energy


MIT-Stanford-Berkeley Nanotech Forum, 050712 KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

Solid Oxide Fuel Cells

Solid Oxide Fuel Cells


from: Ramanarayanan et al., *Electrochem Soc. Interface*, **10**(2001)22

- Direct conversion of chemical energy to electrical energy
- Nernst (1899)
 - solid oxide electrolytes
- Bauer and Preis (1937)
 - tubular SOFC
- Peters and Mobius (1958)
 - planar SOFC
- Operating temperatures from 550°C to 1000°C
 - fuel flexibility
 - high efficiency
 - cogeneration
- Each cell produces ~ 0.7V
- Cells are extended in footprint and stacked in series to build power

MIT-Stanford-Berkeley Nanotech Forum, 050712 KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

SOFC Stacks and Systems

Source: TIAX Report to DOE NETL, June 2002

MIT-Stanford-Berkeley Nanotech Forum, 050712

making fuel cells viable

Applications

Fuel Cell Markets

Application	<i>Current</i> <i>Sources</i>	Power (kW)	Markets	FC Types
Stationary/ Distributed Generation	Utility Grid (Fossil, Hydro, Nuclear)	1 - 10,000	Utility, Industrial, Commercial, Residential	SOFC MCFC PEMFC
Transportation (Auxiliary Power Unit – APU)	IC Engine	5-10	Trucks, Airplanes, Luxury cars, RV's, Buses	SOFC PEMFC
Transportation (Drive)	IC Engine	50 - 200	Automotive, Marine, Aerospace	PEMFC SOFC
Portable	Battery	<1 - 5	Electronics, Military, Portable Generators	PEMFC DMFC SOFC

MIT-Stanford-Berkeley Nanotech Forum, 050712

SOFC Applications

- Stationary
 - SOFCs offer highest overall efficiency combined with fuel flexibility/system simplicity
 - see Dan Rastler's talk
- Transportation drive unit
 - SOFCs not ideally suited for major drive unit
 - Start-up time (high operating temperature)
 - Cost (<\$50/kW for system)
- Portable
 - Several companies developing small portable SOFC power systems (10 – 100W)
 - Mesoscopic Devices, Adaptive Materials, Nanodynamics
 - Several laboratories and small companies pursing small SOFC systems for mobile applications (~ 10-20W)
 - See Alan Jankowski's talk
- Transportation APU
 - Essentially an on-board genset

MIT-Stanford-Berkeley Nanotech Forum, 050712

SOFC APUs

SOFC based APUs

•

- Simpler system than PEMFC
- Provides onboard electricity at higher efficiency vs. alternator
 - Fuel \rightarrow IC engine \rightarrow 12V alternator: 10 17%
 - Fuel \rightarrow IC engine \rightarrow 42V alternator: 14 22%
 - Fuel → SOFC APU: 35 50%
- Enables new features in light duty
 - e.g. drive by wire, electrical AC, mobile office
- Substantial economic and environmental incentives for heavy duty
 - e.g. hotel power, refrigeration
 - Reduces "idling" fuel consumption and emissions up to 85%

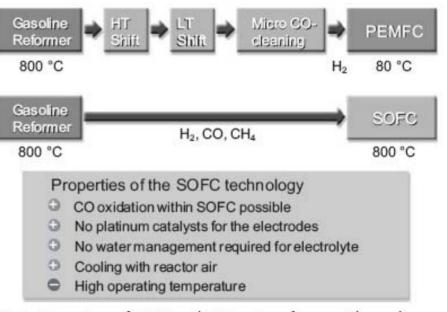


Fig. 4 Comparison of SOFC and PEM systems for use with gasoline as fuel.

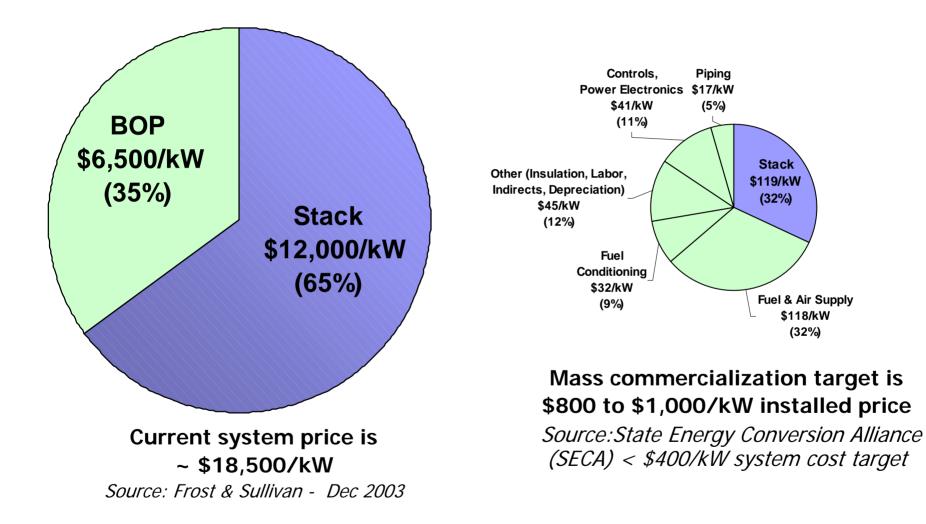
source: Lamp et al., Fuel Cells 3(2003)146

MIT-Stanford-Berkeley Nanotech Forum, 050712

SOFC APUs

• Delphi demonstration of a SOFC APU for BMW 7-series

source: Lamp et al., Fuel Cells 3(2003)146


MIT-Stanford-Berkeley Nanotech Forum, 050712 KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

Status

SOFC Stack Cost Inhibiting Multi \$Billion Market

MIT-Stanford-Berkeley Nanotech Forum, 050712 KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

SOFC: Key Issues for Commercialization

• Cost	 Present mfg. methods are expensive and require development of supply chain tape casting, tape calendering, vacuum spraying, etc Costs (> 10,000 \$/kW) are at least an order of magnitude higher than targets: \$400/kWe for SOFC system
	\$100/kWe for SOFC stack
Operating Temperature	High operating temperature is problematic
	1. requires expensive metal interconnects & BOP component
	2. increases thermal stresses
	3. promotes material interaction
	4. accelerates aging
	Barriers to lower operating temperature include
	1. high cell resistance
	2. poor electrode performance
Reliability	 Degradation mechanisms affecting reliability include
-	1. material interaction
	2. electrode sintering/aging
	3. cell thermal fracture (operation, cycling) &/or seal failure
	4. reformer stability
	5. hotbox component aging

MIT-Stanford-Berkeley Nanotech Forum, 050712

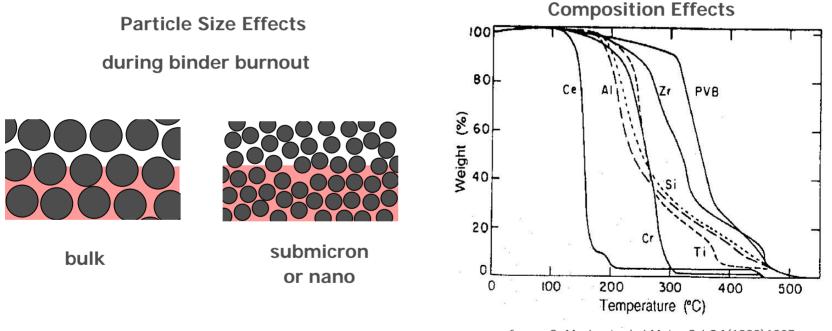
The Nano

Nanoscale Material Benefits to SOFC

- Nanomaterials can have two major effects on SOFCs
 - lower processing temperatures
 - higher performance (W/cm², fuel utilization)
- Lower processing temperature
 - Source: Nano-effect on sinterability
 - Impact(s):
 - Lower manufacturing cost
 - Higher reliability
 - Lower operating cost
 - Faster start-up
- Higher performance
 - Source: Increased reaction area
 - Impact(s):
 - Lower system cost
 - Higher reliability
 - Lower operating cost
- Nanomaterials and their benefits are very challenging to realize, in both fabrication and cost, via conventional methods.

 Studies have demonstrated increased sinterability with reduced particle size in YSZ

from Roosen et al in "Advanes in Zirconia II" 1984


• Reduces material interactions, manufacturing costs

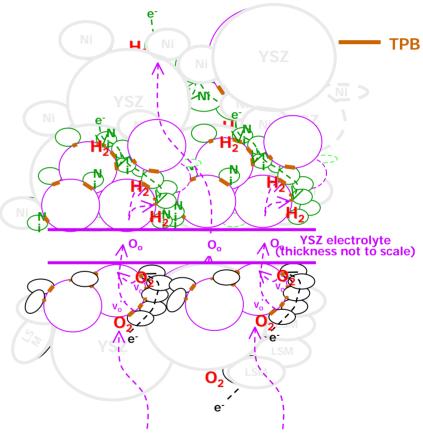
MIT-Stanford-Berkeley Nanotech Forum, 050712 KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

Binder Systems

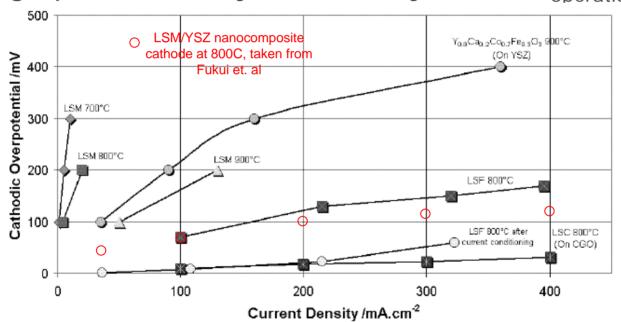
- Binder & other organics are processing aides to get powders in the right form.
- Higher surface area powders require greater amounts of binder.
- Binder removal is long, sensitive to particle size & composition, and produces hazardous vapors.

from: S. Masia et. al, J Mater Sci 24(1989)1907

slows development cycle, adversely impact yield, increases costs and regulatory risk


MIT-Stanford-Berkeley Nanotech Forum, 050712

- SOFC Reactions take place at electrode's triplephase boundary (TPB)
 - Reaction at SOFC anode:
 - $H_{2(g)} + O_{O,YSZ} \Leftrightarrow H_2O_{(g)} + V_{O,YSZ}^{"} + 2e^{-}_{Ni}$
 - TPB is intersection of pore, YSZ particle, & Ni particle
 - Reaction at SOFC cathode:
 - $O_{2(g)}$ +4 e_{LSM} +2 $V_{O,YSZ}$ \Leftrightarrow 2 $O_{O,YSZ}$
 - TPB is intersection of pore, YSZ particle, & LSM particle
- Greater TPB area translates to higher electrode performance
- Nano enables higher performance electrodes
 - \Downarrow particle size \Rightarrow \Uparrow surface area
 - \Uparrow surface area \Rightarrow \Uparrow interfacial area
 - \Uparrow interfacial area \Rightarrow \Uparrow TPB
 - $\uparrow \uparrow TPB \Rightarrow \uparrow \uparrow voltage efficiency$
- Current barriers to nanoscale SOFC materials
 - stability at high operating temperatures (650 to 800°C)
 - · difficult to incorporate into tape-based processes
 - high added cost of powder and cell processing


MIT-Stanford-Berkeley Nanotech Forum, 050712

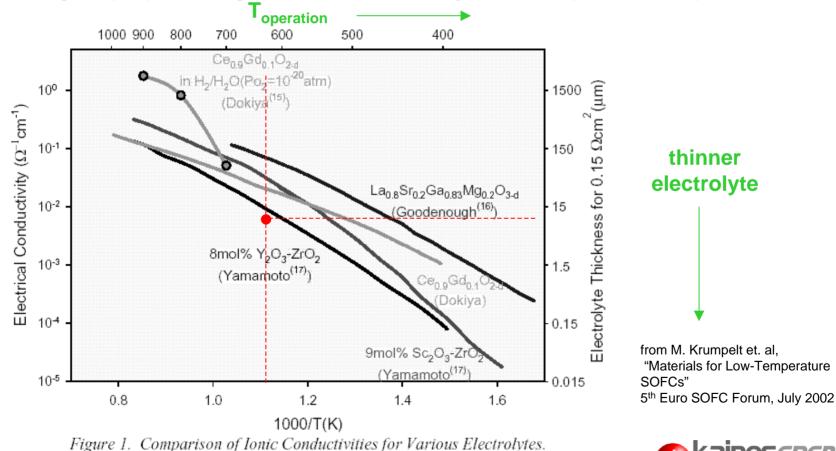
Nano Enhanced Performance

- Dramatically improved performance achieved with nanocomposite of conventional, robust LSM/YSZ cathode
- High power density & efficiency at low T_{operation}

from:

Fig. 5. Cathodic Overpotentials for Different Cathode Materials on CGO and YSZ.

M. Krumpelt et. al, "Materials for Low-Temperature SOFCs" 5th Euro SOFC Forum, July 2002


T. Fukui et. al, "Morphology Control of the Electrode for SOFCs By Using Nanoparticles" J Nanoparticle Research 3(2001)171

MIT-Stanford-Berkeley Nanotech Forum, 050712

Electrolyte Effects

- Lower operating temperature requires lower electrolyte resistance
 - increase electrolyte conductivity via new materials (interactions?, stability?)
 - reduce layer thickness (durability?)
- Some groups pursuing nanofilms for very low temperature operation

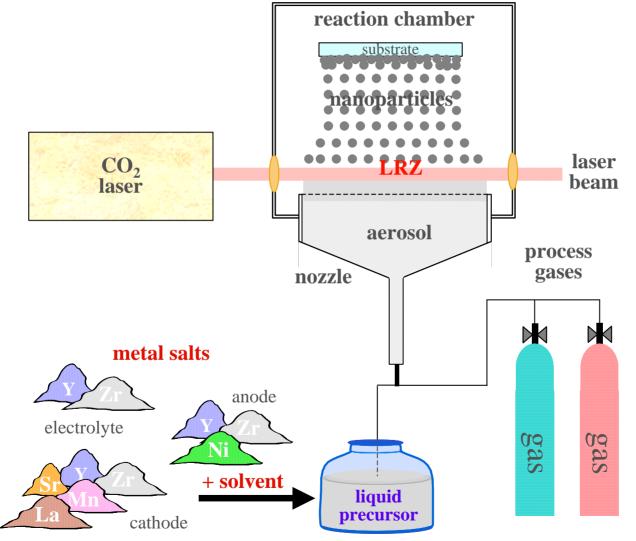
KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

making fuel cells viable

Kainos Energy

Kainos Energy At A Glance

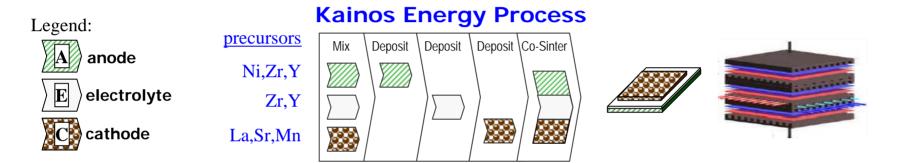
	ALA GIAILLE
The Company:	 Kainos Energy uses a proven efficient manufacturing process to build high performance SOFC stacks to achieve: order of magnitude cost reduction vs. current costs 50% of SECA commercialization cost target, at 10% of SECA's target manufacturing volume Kainos Energy is an early stage start-up Kainos Energy is a subsidiary of NanoGram
Ownership:	 Private Investors: ATA, Nth Power, Bay Partners, Rockport, IVP, SBV
Technology & Business Model:	 Core process technology proven by NanoGram Kainos Energy awarded NSF Phase I SBIR in 2004 Business model proven by NanoGram Devices
IP & License:	 Full license to NanoGram's patent portfolio for SOFC applications >100 patents and applications
NanoGram Affiliates:	 NeoPhotonics (Planar Lightwave Circuits) – raised \$42M in March 2004 NanoGram Devices (medical batteries) – spun out Jan 2003,

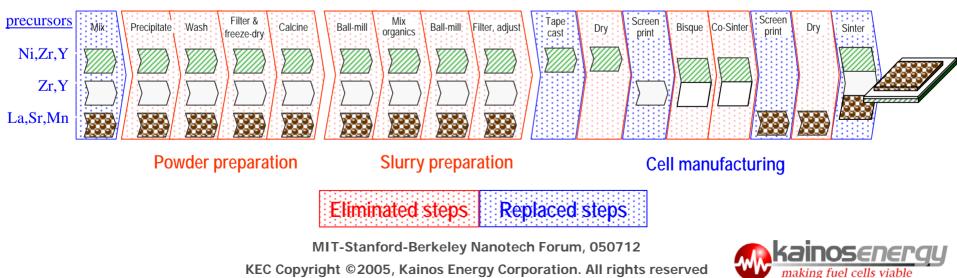

acquired by WGB Tech in March 2004 for \$48M

MIT-Stanford-Berkeley Nanotech Forum, 050712

Overview of LRD™ Process for SOFC cell

• Sequential deposition of SOFC (cell) layers in LRD[™] reactor.


MIT-Stanford-Berkeley Nanotech Forum, 050712


LRD[™]-based SOFC Manufacturing

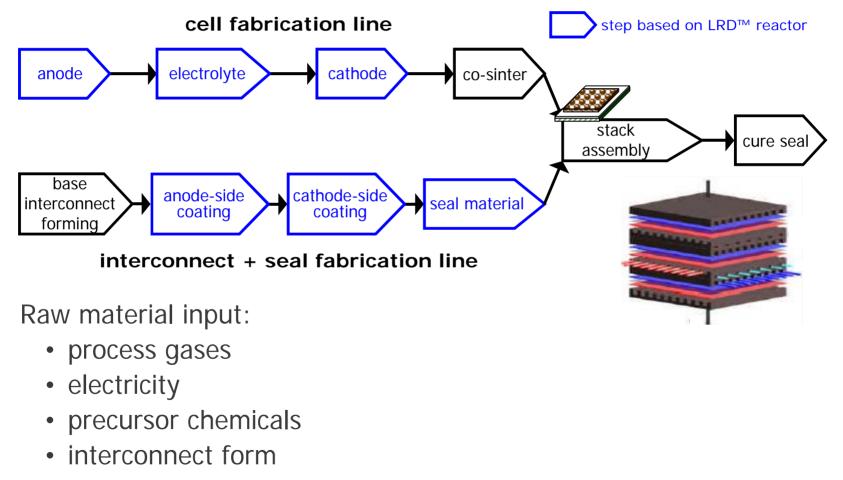
Direct Conversion[™] technology simplifies cell development and manufacturing

- Eliminates 66% of the steps and 50% of the equipment
- Dramatically reduces cycle time; accelerates development, improves scalability
 - 10s of hours versus 100s of hrs at best for conventional methods

Conventional cell manufacturing

Conventional SOFC Manufacturing

• The sequence of steps in conventional processing of SOFC cells



KEC Copyright ©2005, Kainos Energy Corporation. All rights reserved

making fuel cells viable

LRD[™]-based SOFC Manufacturing

• Kainos Energy technology is extendable to interconnects, seals to create a complete solution for stack manufacturing that is simpler and more efficient than conventional methods.

MIT-Stanford-Berkeley Nanotech Forum, 050712

SOFC Information Sources

- International SOFC Symposium Proceedings
 - Electrochemical Society, Pennington NJ <u>www.electrochem.org</u>
 - SOFC-IX in May 2005
- Solid-State Energy Conversion Alliance (SECA) Workshop Proceedings
 - <u>www.seca.doe.gov</u>
- Fuel Cell Handbook (DOE)
 - 7th Edition released in 2004
 - <u>www.netl.gov</u>
- <u>High Temperature Solid Oxide Fuel Cells</u>, S.C. Singhal and K. Kendall, Eds. Elsevier. Oxford, UK. 2003
- <u>Science and Technology of Ceramic Fuel Cells</u>, N.Q. Minh and T. Takahashi. Elsevier Science. Amsterdam. 1995
- Journals
 - Journal of the Electrochemical Society, Electrochemical and Solid State Letters
 - Journal of the American Ceramic Society
 - Nature Materials, Chemistry of Materials
 - Journal of Power Sources, Solid State Ionics

MIT-Stanford-Berkeley Nanotech Forum, 050712

Thank You

questions?

chorne@kainosenergy.com

