Quantum Computation

A Glimpse Into the Future of Computing 6/16/2004

Richard Gordon richard_gordon@verizon.net

Agenda

- Introduction

 Richard Gordon
- Quantum |101>
 Dr. Collin Williams
- JPL
 Dr. Colin Williams
- D-Wave Systems
 Dr. Geordie Rose

- NEC Fundamental Research Labs

 Dr. Shen Tsai
- UC Berkeley, BQIC
 Prof. Umesh Vazirani
- HP Laboratories
 Dr. Tad Hogg

Quantum is Sexy

Quantum is Inevitable

• Thanks for everything Gordon Moore ... it's been a great run

Quantum is Strange

- Richard Feynman -

"If you think you understand quantum mechanics, you don't understand quantum mechanics.

Do not [ask], if you can possibly avoid it, 'But how can it be like that?' because you will go 'down the drain' into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that."

Quantum Information is Different Information is Physical

- Information processing (computing) is a physical process
- Information has energy
- Information can't travel faster than the speed of light
- Quantum information exists in parallel
- Quantum information obeys Heisenberg Uncertainty
- Quantum information is unique and can't be copied
- Quantum information can be teleported

Quantum Computation is Everywhere

The DiVincenzo Criteria								
QC Approach	Quantum Computation						QC Networkability	
	#1	#2	#3	#4	#5		#6	#7
NMR		Q	\diamond	\diamond	\diamond		Ô	Ô
Trapped Ion	\diamond	\diamond	\bigotimes	\diamond	\diamond		\bigotimes	\bigotimes
Neutral Atom	(\diamond	\diamond	6	\diamond		\diamond	\bigotimes
Cavity QED	()	\diamond	(6	\diamond		(\diamond
Optical	(\diamond	\diamond	(\diamond		\diamond	\diamond
Solid State	(\diamond	\diamond	6	\diamond			Ô
Superconducting	\diamond	\diamond	\diamond	Q	\diamond		ô	ô
Unique Qubits	This field is so diverse that it is not feasible to label the criteria with "Promise" symbols.							
Legend: 😔 = a potentially viable approach has achieved sufficient proof of principle								
🐼 = a potentially viable approach has been proposed, but there has not been sufficient proof of principle								

) = no viable approach is known

QC ROADMAP: http://qist.lanl.gov

Quantum Computation is Hard

- Development timeline
 - Mastery will be measured in decades
 - Baby steps happening now
- Many challenges
 - Decoherence
 - Entanglement
 - Isolation
 - Error correction

🕙 Quantum teleportation with at 📥 s - Microsoft Internet Explorer _ 0 File Edit View Favorites Tools) Search 🛛 👷 Favorites 🛛 🕺 Media 9 🖂 - 📥 🕶 🔁 Go Links Web assistant nature 17 June 2004 nature highligh 🏠 home Q search Quantum teleportation with atoms ? help Onamer entanglement in which two particles become this week's highlights correlated and share unique properties, has been Quantum demonstrated several times using pairs of entangled photons, but in a probabilistic way. This involves an item element of hindsight: photons, once paired, are

Nature: 17 June 2004

Quantum Computation is Powerful

Quantum Computation is a Paradigm Shift

Copyright 3 1997 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

Dr. Colin Williams

- Senior Research Scientist, Program Manager for Advanced Computing Paradigms, Information Technology Program Office, JPL, Cal Tech
 - Quantum Computing Technologies Group, 1998
- Author 5 books, including two on quantum computing
 - Explorations in Quantum Computing, Telos Press, 1997
 - Ultimate Zero and One, Copernicus Books, 1999
- Teacher
 - Stanford University, 2000 2002, Associate Professor of Computer Science
- Current research
 - Quantum algorithms for solving computationally hard problems
- Patents
 - Quantum computing circuit synthesis and mapping
 - Quantum lithography
- Ph.D. in artificial intelligence, University of Edinburgh
- M.Sc. and D.I.C. in atmospheric physics and dynamics, Imperial College, University of London
- B.Sc. in mathematical physics, University of Nottingham

Dr. Geordie Rose

- Co-founder, President and CEO of D-Wave Systems, Vancouver, Canada
- Co-inventor on 24 filed patents in the field of superconducting electronics
- Co-author eight peer-reviewed scientific articles
- 2001 Business in Vancouver 40 Under 40 award
- 2002 BCTIA award for Most Promising Start-Up
- Raised over \$20M for D-Wave, including US\$7.1M led by Draper Fisher Jurvetson, June 2003
- Ph.D. in theoretical physics, University of British Columbia
- B.Eng. in engineering physics, McMaster University

Dr. Shen Tsai

- Research Fellow at NEC Fundamental Research Labs
 - Leads Josephson-junction-based qubit project
 - Physics and technology of Josephson effects
 - Single-electron transport phenomena
 - Quantum coherence in superconducting tunneling systems
- Quantum breakthroughs
 - First solid-state based qubit in 1999
 - First solid-state quantum CNOT gate in 2003
 - Efficient single-shot readout in 2004
- Head of the Macroscopic Quantum Coherence Laboratory, Physical and Chemical Institute (Riken)
- Group Leader of the CREST Quantum Information Project
- Ph.D. in physics, SUNY Stony Brook, 1983
- B.S., Physics Department, UC Berkeley, 1975
- Fellow of the American Physical Society

Prof. Umesh Vazirani

- Faculty at U.C. Berkeley since 1987
 - Miller Research Professor in 2000
 - Director of BQIC the Berkeley Center for Quantum Information and Computation
- Author
 - An Introduction to Computational Learning Theory, MIT Press, with Michael Kearns
- Ph.D. in computer science, U.C. Berkeley, 1985
- B.Tech in computer science, M.I.T., 1981

Dr. Tad Hogg

- Member of the Information Dynamics Group, HP Laboratories
- Quantum research
 - Applications
 - Quantum algorithm behavior visualization software
 - http://www.hpl.hp.com/shl/projects/quantum/demo
 - Survey of quantum search algorithms, IEEE Intelligent Systems, July/August 1999
 - (http://www.computer.org/intelligent/ex1999/pdf/x4009.pdf)
- Ph.D., Stanford University
- B.S., California Institute of Technology

Questions and Discussion

Qwindows 2098

