Differential Phase Shift Quantum Key Distribution and Beyond

Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan)

DPS-QKD system

Protocol System components Experiments Security issue

• Future photonic quantum information systems

Single photon source Quantum repeaters Quantum computers

MIT/Stanford/UC Berkeley Nanotechnology Forum (NASA Ames Research Center, Oct. 20, 2005)

Differential Phase Shift Quantum Key Distribution (DPS-QKD)

Inoue, Waks, Yamamoto, PRL, 89, 037902 (2002).

Nondeterministic wavepacket reduction by quantum measurement provides absolute security.

2

Mach-Zehnder Interferometer by PLC

Stable Optical Delay Line

Extinction Ratio > 20 dB

 \bigcirc

C

21.8

Honjo, Inoue, Takahashi, Opt. Lett., 29, 2797 (2004).

21.9

	InGaAs	Si	
Wavelength [nm]	1300-1600	500-900	
Quantum Efficiency	~10 %	~70 %	
Dark Count [Hz]	2 x 10 ⁴ (typ)	50 (typ)	
After Pulse Effect	Large → Gated mode operation (slow repetition)	Small → non-gated mode operation (fast repetition)	

Frequency Up-conversion for 1.5 μ m Single Photon Detection

Experimental Results

	InGaAs APD	Up-conversion		
Wavelength [nm]	1300-1600	1550 (Bandwidth 0.4 nm)		
Quantum Efficiency [%]	~10 %	46% 9% (peak)		
Dark count [Hz]	20 k (typ)	800 k 13 k		
Speed	Gated mode (slow)	Non-gated mode (fast)		

GHz Differential Phase Shift QKD Experiment

Security is based on nonlocal phase correlation and non-deterministic state reduction of single photons.

H. Takesue et al. ,quant-ph/0507110 (2005)

Security Issue — General individual attack —

Communication rate vs. channel loss for DPSQKD and BB84.

Comparison of individual attacks to sequential attacks in DPSQKD.

DPS-QKD with Negligible APD Jitter and Suppressed Noise Photons

Future Prospect

— Semiconductor Cavity QED System for quantum communication and quantum computation —

QD Spectroscopy: "Artificial Atoms"

- Sharp spectral lines at low temperature (≤10GHz)
- Multiparticle effects (<50K)
- Dephasing processes (~1nsec) (phonon,electrostatic)

Deterministic single photon generation

 C. Santori et al., Phys. Rev. Lett. 86, 1502 (2001)

 Deterministic entangled photon-pair generation

 O. Benson et al., Phys. Rev. Lett. 84, 2513 (2000)

Single QD Microcavities

A. Imamoglu (UCSB, Zurich) J.M.Gerard (CEA Grenoble) A. Forchel (Würzburg) A. Scherer (Cal. Tech)

ECR (I) *Q* ≈ 300

G. Solomon et al., Phys. Rev. Lett. 86, 3903 (2001) **ECR (II)** *Q* ≈ 800

M. Pelton et al., Phys. Rev. Lett. 89, 233602 (2002) **CAIBE** *Q* ≈ 1200

J. Vuckovic et al., Appl. Phys. Lett. 82, 3596 (2003) Photonic Crystal $Q \approx 5000$

D. Englund et al., Phys. Rev. Lett. 95, 013904 (2005)

Why indistinguishable single photons and entangled photons from quantum dots/impurities?

Quantum key distributions free from

photon splitting attack in BB84 protocol uncorrelated photon-pair induced error in Ekert91/BBM92 protocol

10-100 psec single photons at high repetition frequency

Quantum repeater based on

entanglement formation, purification and swapping quantum memory (photonic qubit—electronic qubit—nuclear qubit)

10-100 psec single photon pulse capturing and storage

Quantum computation based on

electron spins/nuclear spins in photonic crystal cavity network entanglement formation and non-local two-qubit operation with single photon or coherent state network

10-100 psec gate operation time

Why electron spin processor must be integrated with nuclear spin memory in one system?

Long distance quantum communications

GHz QKD without quantum repeaters creates a secure key at ~1 bit/s over 400 Km. Quantum repeaters for terrestrial system (~1,000 Km) and inter-continental system (~10,000 Km) require an operation time of ~1 sec and ~10 sec to complete nested entanglement purification/swapping protocol.

A nuclear spin (T2 >> 1 sec) is a unique choice to store a qubit of information.

Large-scale quantum computers

Communication bottle-neck is a severe problem for performing two-qubit operations between distant registers. Nuclear spin memory, electron spin processor and photonic qubit network should be integrated into one system.

Collision of Two Single Photons

Table 1 Summary of quantum-dot parameters									
	g ⁽²⁾	g	$ au_{ m s}$ (ps)	$ au_{ m c}$ (ps)	$ au_{ m m}$ (ps)	V(0)			
Dot 1	0.053	0.039	89	48	80	0.72			
Dot 2	0.067	0.027	166	223	187	0.81			
Dot 3	0.071	0.025	351	105	378	0.74			

Violation of Bell's inequality

D. Fattal et al., PRL 92, 037903 (2004)

• Input :
$$|H\rangle_1 |H\rangle_2$$

• Output :
$$\frac{1}{2} \left(|H\rangle_A |V\rangle_B - |V\rangle_A |H\rangle_B \right)$$

Analyzer angles used in experiment: $\alpha = 0/90^{\circ} \quad \alpha' = 45/135^{\circ}$ $\beta = 22.5/112.5^{\circ} \beta' = 67.5/157.5^{\circ}$ $S_{CHSH} = 2.377 \pm 0.18 > 2$

 Scheme relies on quantum interference between two independent single photons from a QD.

Entanglement is induced by the measurement:

NO optical non-linearity required.

□ Ideal efficiency is ½.

□ Only **single** pairs are created.

□ Application to **BBM92** QKD.

□ Opens the way to efficient generation of **multi-particle** entanglement and linear-optics quantum computing...

Mixed state due to $g^{(2)}(0) \neq 0$ and V(0) < 1.

Single Mode "Teleportation"

Nonadiabatic Coherent Trapping and Emission of Arbitrary Single Photon Pulses

Applications to Quantum Information Systems

